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This document presented the oral and visual presentation entitled

"Low Frequency Sound Absorption in Sea Water: A New Chemical Relaxation

Mechanism?," presented at the 101st Meeting of the Acoustical Society of

America, 18-22 May 1981, in Ottawa, Ontario, Canada.

Excess sound absorption in sea water arises mainly from chemical relaxa-
tions involving MgSO4 and B(OH)3 . The high-frequency (100 kHz) MgSO4 relaxa-

tion has been identified as a multistep ion-pair process. The low frequency
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i20 . (Continued):

(1 kHz) and B(OH)3 relaxation apparently involves more complex interactions with
other constituents. To investigate B(OH)3 interactions in a simpler system, we
measured absorption in KH3 solution using th resonator m ethod. We have found
otmax to be proportional to the product of NH4a B(OH)'concentrations;
however, the magnitude is much too large to be caused by the ion pair. The
mechanism, probably similar to that in sea water, resembles catalysis, the\
absorption being governed by the large volume change of the faster NH3/NH4+
equilibrium and the relaxation frequency by the slower B(OH)3/B(OH)( equili-
brium.
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Low-Frequency Sound Absorption in Sea Water:
A New Chemical Relaxation Mechanism?

o MISCELLANEA,<1950

162  _ _ 
NORTH ATLANTIC

OCEAN
MARSH & o THORP & BERNIER, 1959
SCHULKIN a 00 0 THORP & BERNIER, 1962

0

Si ° SUSSMAN, MACDONALD
& KANABIS, 1963

Z oURICK, 1963
S, KARAMARGIN, 1965

'.104

0 / MEDITERRANEAN

z /SEA
05 _. 5 °

; 10 LALLEMENT &
010j. / WATERMAN, 1963

z • LEROY, 1964
--- 'a

6 /4104 NORTH PACIFIC=o~* /
0 1g: • / OCEAN

* / *GREER & BOLAM, 1954
167 _ __ SHEEHY & HALLEY, 1957

10-2 -(I 00 101 102

12 16 00 101 10 2

FREQUENCY IN kHz

Slide I

Since the publication in 1965 of a summary paper by Bill Thorp of NUSC,
which showed the attenuation of low frequency sound in sea water to be

anomalously high, the subject has received much attention, especially during the

last decade.

It has been shown that this attenuation is due to absorption by a chemical

relaxation reaction. Yeager and Fisher first identified boron as an essential com-
ponent in the reaction.

This paper will review what we know - and don't know - about this low-

frequency absorption based on our recent resonator measurements.
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Slide 2

To put this absorption in perspective, it is one of three chemical relaxation
mechanisms that are responsible for sound attenuation in sea water. The resultant
of these three components (the outside solid line) is in excellent agreement with at-
sea measurements, in this case our measurements in the Red Sea.

At high freqeuncies a magnesium-sulphate reaction dominates; at mid-
frequencies there is a significant, but not dominant magnesium carbonate reaction;
and at low frequencies the boric acid relaxation, which we are interested in,
dominates.
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Laboratory measurements of the low frequency relaxation were first conducted
in Dr. Yeager's laboratory using the temperature-jump technique (or T-jump
technique) and were continued at Scripps by Fisher and Simmons. (CAPT Vern
Simmons was later a Program Officer at NUSC.)

The T-jump technique determines the relaxation frequency of a reaction, but
not the magnitude of the corresponding absorption that will turn out to be
significant.
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By systemically adding or omitting the constituents of artificial sea water
(abbreviated as ASW - not the ASW most of you are familiar with), Yearger and
Fisher showed that boron was essential to the reaction. The relaxation frequency
was in good agreement with that obtained from our at-sea measurements.

Simmons obtained the relaxation frequency as a function of Boron con-
centration in artificial sea water, reaching an asymtotic value of 3.5 kilohertz. For
the naturally occurring boron concentration in sea water (0.5 millimoles), the
relaxation frequency is 1.5 kilohertz, as expected, for room temperature.

When Simmons repeated the same experiment with only sodium chloride added
to the boron, the relaxation frequency was, somewhat surprisingly, consistently
lower. This implied that there could perhaps be different interactions with the boron
in each case.

4
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B(OH) 3 + OH- B(OH) 3 ,OH - B(OH)

TWO STEP REACTION

Slide 5

Based on the asymptotic behavior of the relaxation frequency in artificial sea
- water, Simmons proposed a two-step boron/boric acid reaction to explain the low

frequency absorption. It is the second step, on the right, that is the slow reaction
's that causes the absorption of sound.

:
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To directly measure the absorption of low frequency sound in the laboratory,

the resonator technique is used. In practice, due to size and weight restrictions, very

low frequency measurements are difficult, but this can be compensated for by

A increasing the concentration and temperature over normal sea water conditions.

These results can then be extrapolated back to normal sea water conditions.

Our system had a 72-liter resonating sphere that gave good results down to 10
kilohertz. We developed a direct supply and pH monitoring system to facilitate

these measurements and this technique is now being used by other investigators.
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The absorption obtained from the resonator measurements provided both a
verification and a surprise. For artificial sea water, the observed absorption is as
expected from at-sea data and the corresponding relaxation frequency agrees with
the T-jump measurements. Everything is fine.

However, the boric acid alone (shown by the dashed line down at the bottom of
the figure) had an absorption that was much less than artificial sea water.

The logical explanation is that another constituent of sea water acts to enhance
the boron absorption.
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The key question then is what constituent, or constituents, could be respon-
I sible. Fortunately, the possibilities are not endless, as this standard diagram of the

sea water constituents shows. The concentrations drop off rapidly, so that you can
ignore many trace components.

We have found that two other constituents, Ci and CO,, were required to
enhance the boron absorption to the level observed in sea water.

8
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The effect of each of these two additional components was observed to be
* different. For example, the effect of CO2 did not depend strongly on concentration.

The effect of Ca, on the other hand, was concentration-dependent, as shown here.

For the range of concentration shown (0.5 to 20 millimoles), there is an order
of magnitude change in absorption. At the bottom left, we have indicated the
asymptotic value (0.18) that is obtained at near zero concentrations.

9V.
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When we increase the boron concentration (shown on the right for each curve)
while holding the other two components constant, there is a corresponding rise in
absorption.

4
The behavior of the relaxation frequencies is very interesting. At the lowest

boron concentration (2 millimoles), we are clearly in the asymptotic region of a
relaxation frequency probably not far from the 3.5 kilohertz reported by Simmons.
Ilowever, as we increase the concentration, the relaxation frequency shifts upwards,
reaching approximately 30 kilohertz for the 40 millimole boron concentration.

We are now with a dilemma: the boron/boric acid reaction alone has the
observed relaxation frequency, but not a sufficient absorption. Adding Ca and CO2
brings the absorption up to the proper value, but we are faced with a concentration
dependent relaxation frequency greatly exceeding 3.5 kilohertz at higher con-
centrations.

10
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B(OH) 3 + CaC0 3 + H20 *B(OH) 4  + Ca2 * + HCO3

PROPOSED EXCHANGE REACTION

Slide 11

The only way that we could explain this behavior was to propose an exchange
reaction between the boron/boric acid system and a carbonic acid/CO 2 system.

This is in line with the general exchange reaction proposed by Yeager in the
original article on the boron absorption in 1973. It is difficult to see, however, how
the second constituent, calcium, fits into the picture. At higher concentrations, we
believe that the non-relaxing part of this reaction dominates so that the T-jump
measurements simply do not see the higher relaxation frequencies. This would
explain the asymptotic 3.5 kilohertz value measured by Simmons in artificial sea
water.

I
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The measured pH dependency of absorption agrees with that predicted for such
an exchange reaction, reaching a maximum value at pH = 9.5. So we have ad-
ditional evidence for an exchange reaction.

7i
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Slide 13

If a boron exchange reaction is the key to the low frequency absorption, we
could ask: "Are there other substances that would react with boron in the general
way proposed by Yeager in 1973 for a Lewis base?" Yeager's general form is shown
on the bottom line with the Lewis base designated by L.

* A likely candidate might be ammonia, which should have the straightforward
reaction shown in the top line.

13
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This is indeed the case, observe the change in absorption obtained by the ad-
dition of I millimole of ammonium hydroxide to 10 millimoles of boric acid. Note
also the characteristic pH dependence for an exchange reaction when the am-
monium hydroxide is added.

There are several implications. First, this reaction might be responsible for the
additional excess absorption observed in sea water below 100 hertz. Secondly, it is
possible to enhance the absorption due to the low frequency boron reaction.

14
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CONCLUSIONS

1. Other ions involved in low frequency boron relaxation.

2. Data suggest an exchange reaction.

3. Enhancement of absorption possible.

-4
Slide 15

We can summarize our results with three conclusions:
1. Two other sea water constituents, Ca and CO2, are involved in the low

frequency boron absorption.
2. The data support an exchange reaction as the principal mechanism, but

the essential role of Ca is not fully understood.
3. Enhancement of the low frequency absorption is possible.

Thank you.
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